Development and matching of binocular orientation preference in mouse V1

نویسندگان

  • Basabi Bhaumik
  • Nishal P. Shah
چکیده

Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mir-132/212 is required for maturation of binocular matching of orientation preference and depth perception

MicroRNAs (miRNAs) are known to mediate post-transcriptional gene regulation, but their role in postnatal brain development is still poorly explored. We show that the expression of many miRNAs is dramatically regulated during functional maturation of the mouse visual cortex with miR-132/212 family being one of the top upregulated miRNAs. Age-downregulated transcripts are significantly enriched ...

متن کامل

Binocular matching of thalamocortical and intracortical circuits in the mouse visual cortex

Visual cortical neurons are tuned to similar orientations through the two eyes. The binocularly-matched orientation preference is established during a critical period in early life, but the underlying circuit mechanisms remain unknown. Here, we optogenetically isolated the thalamocortical and intracortical excitatory inputs to individual layer 4 neurons and studied their binocular matching. In ...

متن کامل

Critical Period Plasticity Matches Binocular Orientation Preference in the Visual Cortex

Changes of ocular dominance in the visual cortex can be induced by visual manipulations during a critical period in early life. However, the role of critical period plasticity in normal development is unknown. Here we show that at the onset of this time window, the preferred orientations of individual cortical cells in the mouse are mismatched through the two eyes and the mismatch decreases and...

متن کامل

A self-organizing model of disparity maps in the primary visual cortex

Current models of primary visual cortex (V1) development show how visual features such as orientation and eye preference can emerge from spontaneous and visually evoked neural activity, but it is not yet known whether spatially organized maps for low-level visual pattern disparity are present in V1, and if so how they develop. This report documents a computational approach based on the LISSOM m...

متن کامل

Environmental Enrichment Rescues Binocular Matching of Orientation Preference in Mice that Have a Precocious Critical Period

Experience shapes neural circuits during critical periods in early life. The timing of critical periods is regulated by both genetics and the environment. Here we study the functional significance of such temporal regulations in the mouse primary visual cortex, where critical period plasticity drives binocular matching of orientation preference. We find that the binocular matching is permanentl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014